Stability of LAPONITE®-stabilized high internal phase Pickering emulsions under shear.
نویسندگان
چکیده
Colloidal particles are often used to make Pickering emulsions that are reported to be very stable. Commonly the stabilization is a combined effect of particle adsorbing at the fluid interface and a particle network in the continuous phase; the contribution of each to the overall stability is difficult to assess. We investigate the role of LAPONITE® particles on high internal phase emulsion stability by considering three different situations: emulsion stabilization by surfactant only, by surfactant plus clay particles, and finally clay particles only. To clarify the structure of the emulsion and the role of the clay particles, we have succeeded in fluorescently labelling the clay particles by adsorbing the dye onto the particle surfaces. This allows us to show directly using confocal microscopy, that the clay particles are not only located at the interface but also aggregate and form a gel in the continuous aqueous phase. We show that the emulsions in the presence of surfactant (with or without clay) are stable to coalescence and shear. Without surfactant (with only LAPONITE® as stabilizer) the emulsions are stable to coalescence for several weeks, however they destabilize rapidly under shear. Our results suggest that the formation of the emulsions is mostly due to gel formation of the clay particles in the continuous phase, rather than that the clay is an emulsifier. This gel formation also accounts for the instability of the emulsions to shear that we observe caused by shear thinning of the continuous gel and inability of the adsorbed particles to rearrange effectively around the droplets due to their attractive nature.
منابع مشابه
Macroporous foams obtained in highly concentrated Pickering emulsions stabilized solely with magnetic nanoparticles
Macroporous solid foams with magnetic properties may have interesting applications as adsorbents for purification and decontamination processes. High pore volume can ensure a high degree of absorption, and magnetic properties can facilitate removal from environment. Organic macroporous polymeric foams, with high pore volume and high degree of interconnectivity, can be obtained by polymerizing i...
متن کاملHigh internal phase emulsions stabilized solely by functionalized silica particles.
High Internal Phase Emulsions (HIPEs) are important for a wide range of applications in the food, cosmetic, pharmaceutical and petroleum industries. If the continuous phase is polymerizable, HIPEs can be used as templates for the synthesis of highly porous polymers with potential applications as low weight structures or scaffolds in tissue engineering. HIPEs are characterized by a minimum inter...
متن کاملPickering emulsion as a template to synthesize Janus colloids with anisotropy in the surface potential.
A versatile new concept is presented for the synthesis of Janus colloids composed of Laponite nanoclay armored poly(divinylbenzene) with an anisotropic surface potential via a double Pickering emulsion template. First, polystyrene or poly(divinylbenzene) colloids stabilized with Laponite nanoclay are synthesized via a Pickering miniemulsion approach. These nanoparticle-stabilized colloids were ...
متن کاملNanocellulose-stabilized Pickering emulsions and their applications
Pickering emulsion, which is an emulsion stabilized by solid particles, offers a wide range of potential applications because it generally provides a more stable system than surfactant-stabilized emulsion. Among various solid stabilizers, nanocellulose may open up new opportunities for future Pickering emulsions owing to its unique nanosizes, amphiphilicity, and other favorable properties (e.g....
متن کاملCrude Oil Interfacial Tension Reduction and Reservoir Wettability Alteration with Graphite or Activated Carbon/Silica Nanohybrid Pickering Emulsions
In this research, two carbon structures silica nanohybrids Pickering emulsions were prepared. Graphite and activated carbon were carbon allotropes with different morphologies of laminar and spherical, respectively. The effect of carbon morphology investigated on the related silica nanohybrids Pickeringemulsions for C-EOR. Therefore, nanohybrids were prepared with graphite and activated carbon t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 18 33 شماره
صفحات -
تاریخ انتشار 2016